MATERI BIMBINGAN ASTRONOMI
1. HUKUM GRAVITASI NEWTON
1. Dapat menjelaskan tentang gerak benda langit melalui interaksi gaya tarik menarik Newton
1. Teori
Hukum Newton tentang gravitasi Universal berbunyi sebagai berikut :
Semua benda di alam semesta menarik semua benda lain dengan gaya sebanding dengan hasil kali massa benda-benda tersebut dan berbanding terbalik dengan kuadrat jarak antara benda-benda tersebut.
Secara matematis, besar gaya gravitasi antara partikel dapat ditulis sbb :
1. HUKUM GRAVITASI NEWTON
1. Dapat menjelaskan tentang gerak benda langit melalui interaksi gaya tarik menarik Newton
1. Teori
Hukum Newton tentang gravitasi Universal berbunyi sebagai berikut :
Semua benda di alam semesta menarik semua benda lain dengan gaya sebanding dengan hasil kali massa benda-benda tersebut dan berbanding terbalik dengan kuadrat jarak antara benda-benda tersebut.
Secara matematis, besar gaya gravitasi antara partikel dapat ditulis sbb :

dengan
Fg adalah besar gaya gravitasi pada salah satu partikel, m1 dan m2 adalah massa kedua partikel, r adalah jarak antara kedua partikel.
G adalah konstanta universal yang diperoleh dari hasil pengukuran secara eksperimen. 100 tahun setelah eyang Newton mencetuskan hukum Gravitasi Universal, pada tahun 1978, Henry Cavendish berhasil mengukur gaya yang sangat kecil antara dua benda, mirip seperti dua bola. Melalui pengukuran tersebut, Henry membuktikan dengan sangat tepat persamaan Hukum Gravitasi Universal di atas. Perbaikan penting dibuat oleh Poyting dan Boys pada abad kesembilan belas. Nilai G yang diakui sekarang = 6,67 x 10-11 Nm2/kg2
Contoh soal 1 :
Seorang guru fisika sedang duduk di depan kelas dan seorang murid sedang duduk di bagian belakang ruangan kelas. Massa guru tersebut adalah 60 kg dan massa siswa 70 kg (siswa gendut). Jika pusat mereka (yang dimakudkan di sini bukan pusat yang terletak di depan perut manusia) berjarak 10 meter, berapa besar gaya gravitasi yang dialami oleh guru dan murid satu sama lain ?
Panduan jawaban :
Gampang, tinggal dimasukkan aja nilai-nilai yang telah diketahui ke dalam persamaan Hukum Newton tentang Gravitasi

Ya, gayanya sangat kecil…
Contoh soal 2 :
Diketahui massa bulan 7,35 x 1022 kg, massa bumi 5,98 x 1024 kg dan massa matahari adalah 1,99 x 1030 kg. Hitunglah gaya total di bulan yang disebabkan oleh gaya gravitasi bumi dan matahari. Anggap saja posisi bulan, bumi dan matahari membentuk segitiga siku-siku. Oya, jarak bumi-bulan 3,84 x 108 m dan jarak matahari-bulan 1,50 x 108 km (1,50 x 1011 m).

Keterangan Gambar :
b = bulan, B = bumi dan M = matahari
Panduan jawaban :
Gaya total yang bekerja pada bulan akibat gravitasi matahari dan bumi kita hitung menggunakan vektor. Sebelumnya, terlebih dahulu kita hitung besar gaya gravitasi antara bumi-bulan dan matahari-bulan.
Besar gaya gravitasi antara bumi-bulan :

Besar gaya gravitasi antara matahari-bulan.
Besar gaya total yang dialami bulan dapat dihitung sebagai berikut :
Latihan
1. Tentukan massa massa Pluto dinyatakan dalam massa matahari, jika diketahui
Kuat Medan Gravitasi dan Percepatan Gravitasi
Pada pembahasan mengenai Hukum Newton tentang Gravitasi, kita telah meninjau gaya gravitasi sebagai interaksi gaya antara dua atau lebih partikel bermassa. Partikel-partikel tersebut dapat saling berinteraksi walaupun tidak bersentuhan. Pandangan lain mengenai gravitasi adalah konsep medan, di mana sebuah benda bermassa mengubah ruang di sekitarnya dan menimbulkan medan gravitasi. Medan ini bekerja pada semua partikel bermassa yang berada di dalam medan tersebut dengan menimbulkan gaya tarik gravitasi. Jika sebuah benda berada di dekat bumi, maka terdapat sebuah gaya yang dikerjakan pada benda tersebut. Gaya ini mempunyai besar dan arah di setiap titik pada ruang di sekitar bumi. Arahnya menuju pusat bumi dan besarnya adalah mg.
Jadi jika sebuah benda terletak di setiap titik di dekat bumi, maka pada benda tersebut bekerja sebuah vektor g yang sama dengan percepatan yang akan dialami apabila benda itu dilepaskan. Vektor g tersebut dinamakan kekuatan medan gravitasi. Secara matematis, besar g dinyatakan sebagai berikut :
Berdasarkan persamaan di atas, kita dapat mengatakan bahwa kekuatan medan gravitasi di setiap titik merupakan gaya gravitasi yang bekerja pada setiap satuan massa di titik tersebut.
Gravitasi di Sekitar Permukaan Bumi
Pada awal tulisan ini, kita telah mempelajari Hukum gravitasi Newton dan menurunkan persamaan gravitasi Universal. Sekarang kita mencoba menerapkannya pada gaya gravitasi antara bumi dan benda-benda yang terletak di permukaannya. Kita tulis kembali persamaan gravitasi universal untuk membantu kita dalam menganalisis :
Untuk persoalan gravitasi yang bekerja antara bumi dan benda-benda yang terletak di permukaan bumi, m1 pada persamaan di atas adalah massa bumi (mB), m2 adalah massa benda (m), dan r adalah jarak benda dari permukaan bumi, yang merupakan jari-jari bumi (rB). Gaya gravitasi yang bekerja pada bumi merupakan berat benda,yang besarnya w = mg.
Dengan demikian, persamaan di atas kita ubah menjadi : w = F atau
Berdasarkan persamaan ini, dapat diketahui bahwa percepatan gravitasi pada permukaan bumi alias g ditentukan oleh massa bumi (mB) dan jari-jari bumi (rB)
G dan g merupkan dua hal yang berbeda. g adalah percepatan gravitasi, sedangkan G adalah konstanta universal yang diperoleh dari hasil pengukuran. Setelah G ditemukan, manusia baru bisa mengetahui massa bumi lewat perhitungan menggunakan persamaan ini. Hal ini bisa dilakukan karena telah diketahui konstanta universal, percepatan gravitasi dan jari-jari bumi.
Ini adalah persamaan percepatan gravitasi efektif. Jika ditanyakan percepatan gravitasi pada ketinggian tertentu di dekat permukaan bumi, maka kita dapat menggunakan persamaan ini. Jika kita menghitung berat benda yang terletak di permukaan bumi, kita menggunakan
w = mg.
Contoh soal
1.Massa seorang astronot di bumi 40 kg, berapakah beratnya ? Jika astronot berasa di permukaan asteroids yang gravitasinya 10 kali lebih kecil dari gravitasi permukaan bumi, hitung massa dan berat astronot sekarang ! anggap g bumi 9,8 m/s2 ( OAN 2004)
Penyelesaian
a. Berat astronot di bumi w = mg
w = 40 kg 9,8 m/s2
w = 392 newton
b. massa dan berat astronot di asteroid , diketahui g as = g b/10
massa = banyak materi pada benda , sifat massa tidak berubah dan berat = pengruh
gravitasi pada benda. Karena gravitasi berubah maka berat selalu berubah. Jadi
massa astront di asteroid = massa asreonot di bumi = 40 kg
berat astronot di asteroid w as = m x g as = 40 x 9,8/10 = 39,2 newton
1. Dapat menjelaskan tentang bentuk orbit dan gerak benda langit dalam orbit
2. Hubungan periode orbit dan jarak benda langit terhadap titik pusat massa.
2. HUKUM KEPLER
Ada tiga Hukum Kepler mengenai gerak planet.
Hukum I Kepler
Lintasan setiap planet ketika mengelilingi matahari berbentuk elips, dengan matahari terletak pada salah satu fokusnya.Ilustrasinya seperti gambar
Kepler tidak mengetahui alasan mengapa planet bergerak dengan cara demikian. Ketika mulai tertarik dengan gerak planet-planet, eyang Newton menemukan bahwa ternyata hukum-hukum paman Kepler ini bisa diturunkan secara matematis dari hukum gravitasi universal dan hukum gerak Newton. Eyang Newton juga menunjukkan bahwa di antara kemungkinan yang masuk akal mengenai hukum gravitasi, hanya satu yang berbanding terbalik dengan kuadrat jarak yang konsisten dengan Hukum Kepler.
Perhatikan orbit elips yang dijelaskan pada Hukum I Kepler. Dimensi paling panjang pada orbit elips disebut sumbu mayor alias sumbu utama, dengan setengah panjang a. Setengah panjang ini disebut sumbu semiutama alias semimayor (sambil lihat gambar di bawah ya).
F1 dan F2 adalah titik Fokus. Matahari berada pada F1 dan planet berada pada P. Tidak ada benda langit lainnya pada F2. Total jarak dari F1 ke P dan F2 ke P sama untuk semua titik dalam kurva elips. Jarak pusat elips (O) dan titik fokus (F1 dan F2) adalah ea, di mana e merupakan angka tak berdimensi yang besarnya berkisar antara 0 sampai 1, disebut juga eksentrisitas.Jika e = 0 maka elips berubah menjadi lingkaran. Kenyataanya, orbit planet berbentuk elips alias mendekati lingkaran. Dengan demikian besar eksentrisitas tidak pernah bernilai nol. Nilai e untuk orbit planet bumi adalah 0,017. Perihelion merupakan titik yang terdekat dengan matahari, sedangakan titik terjauh adalah aphelion.
Berdasarkan gambar di atas jarak planet dari matahari dapat dicari sebagai berikut:
1.ketika planet berada di titik perihelion jarak planet ke Matahari rp = a – ae dengan eksentrisitasnya ae = a – rp ------ e = 1 – rp/a
2.ketika planet berada di titik aphelion ra = 2a – rp = 2a - (a – ae) = a + aedengan eksentrisitasnya ae = ra - a ------ e = ra/a -1
Pada Persamaan Hukum Gravitasi Newton, telah kita pelajari bahwa gaya tarik gravitasi berbanding terbalik dengan kuadrat jarak (1/r2), di mana hal ini hanya bisa terjadi pada orbit yang berbentuk elips atau lingkaran saja.
Contoh soal Hukum I Kepler :
1. Komet Halley bergerak sepanjang orbit elips mengitari matahari. Pada perihelion, komet Halley berjarak 8,75 x107 km dari matahari, sedangkan pada aphelion berjarak 5,26 x 109 km dari matahari. Berapakah sumbu semimayor dan eksentrisitas dari orbit komet halley
Panduan jawaban :
Panjang sumbu utama sama dengan total jarak komet ke matahari ketika komet berada di perihelion dan aphelion.
Panjang sumbu utama adalah 2a, dengan demikian :
Pada Perihelion, jarak komet Halley dengan matahari diperoleh dari (sambil perhatikan gambar di atas) :
rp = a - ea = a(1-e)
Jarak komet Halley dengan matahari ketika komet Halley berada pada perihelion adalah 8,75 x107 km. Dengan demikian, eksentrisitas komet Halley adalah :rp = a – ea ea = a - rpe = 1 – rp/a
Nilai eksentrisitas komet halley mendekati 1. Ini menunjukkan bahwa orbit halley sangat panjang….
Latihan Soal Hukum I Kepler :
Latihan soal 1 :
Ketika Pluto masih disebut planet pada sistem tata surya kita, pluto disebut sebagai planet terluar. Walaupun demikian, pada tahun 1989 pluto hampir 100 juta km lebih dekat ke matahari dibandingkan neptunus. Sumbu semimayor orbit pluto dan neptunus adalah 5,92 x 1012 m dan 4,50 x 1012 m. Eksentrisitas pluto adalah 0,248, sedangkan eksentrsitas neptunus adalah 0,010. hitunglah jarak terdekat pluto dari matahari dan jarak terjauh neptunus dari matahari. Berapa tahun lagi pluto akan kembali ke perihelion ?
Latihan soal 2 :
Salah satu komet yang paling terang pada abad dua puluh adalah komet Hyakutake. Komet tersebut melintas dekat matahari pada awal tahun 1996. periode orbit komet sekitar 30.000 tahun. Hitunglah sumbu semimayor dari orbit komet ini.
Hukum II Kepler
Luas daerah yang disapu oleh garis antara matahari dengan planet adalah sama untuk setiap periode waktu yang sama.
Hal yang paling utama dalam Hukum II Kepler adalah kecepatan sektor mempunyai harga yang sama pada semua titik sepanjang orbit yang berbentuk elips.
Latihan soal Hukum II Kepler :
Pada titik mana dalam orbit elips, percepatan gerak planet maksimum dan pada titik mana percepatannya minimum ? jelaskan secara panjang lebar
Benar atau salah-kah pernyataan berikut ini : planet memiliki laju maksimum pada aphelion dan lajunya minimum pada perihelion
bumi lebih dekat dengan matahari pada bulan november daripada bulan juni. Pada bulan apakah bumi bergerak lebih lambat dalam orbitnya ? jelaskan
Hukum III Kepler
Kuadrat waktu yang diperlukan oleh planet untuk menyelesaikan satu kali orbit sebanding dengan pangkat tiga jarak rata-rata planet-planet tersebut dari matahari.
Jika T1 dan T2 menyatakan periode dua planet, dan r1 dan r2 menyatakan jarak rata-rata mereka dari matahari, maka